

[Dülger* 6(4): April, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [32]

VIRTUAL MODEL FOR THE SIMULATION OF THE CONTROLLER AREA

NETWORK

Mustafa Dülger
Mechanical Engineering Department, Faculty of Engineering, University of Istanbul Cerrahpasa, Istanbul

34320, Turkey

DOI: 10.5281/zenodo.2656480

KEYWORDS: Distributed Control System, Controller Area Network, Simulation, C++, Virtual Model.

ABSTRACT
In this work, a virtual model for the simulation of Controller Area Network (CAN) transmission protocol is

proposed. The proposed model is named as the Can Bus Simulation Model (CBSM). Underlying hardware of

the CAN protocol is ignored as the objective is to lay down a base model for the grand process which is to be

simulated under the windows operating system. The model is composed of virtual nodes, virtual bus and virtual

container objects. The node objects interchange CAN message over the bus object. The bus object acts as if it

were a CAN controller. The container object is the place holder for the bus and nodes objects. The model is

based on the COM (Component Object Model) technology. A dynamic link library, CanServer.dll,

implementing the proposed model is developed in C++. The library is made available by the author if requested

INTRODUCTION
The central control system is losing importance as the trend is towards decentralized embedded control system.

Many engineering problems are now modelled by the decentralized embedded models. The rapid development

in the electronics of field protocols has accelerated this trend. Parallel to this trend, simulation of field protocols

helps simulation of embedded models and speeds up the development process.

One of the remarkable characteristic of the embedded control system is the full abstraction and separation of the

communication part from the main process. This let the process developer fully focus on the process and not on

the communication. Another important issue is the simulation of the process on computer to accelerate the

process development. The work presented in this manuscript reveals a virtual model for the simulation of the

Controller Area Network (CAN) communication protocol [1]. The proposed model is named as the Can Bus

Simulation Model (CBSM). The goal is to automate can communication protocol under windows environment

and develop a dynamic link library for the simulation. When a process developer needs to simulate his own

process under windows operating system, he will not have to deal with the communication issues among the

process objects. Instead the library will take over the communication tasks. He needs only link the library to the

grand process. CBSM model is based on the Component Object Modelling (COM) technology [2]. A dynamic

link library, CanServer.dll, implementing the proposed model, is developed in C++. The library is made

available by the author if it is requested.

CONTROLLER AREA METWORK MODEL
Fig.1 illustrates the Controller Area Network Model (CANM) for a distributed system. The CANM has m node

objects being connected over the can bus protocol. Each node should interact with the process object through the

well-defined process interface. Design of the process object is the duty of the process designer.

Fig.1: Controller Area Network Model for a distributed system having m nodes.

can bus

node 1

process process process process distributed system

node 1 node 1 node m

. .

[Dülger* 6(4): April, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [33]

CAN BUS SIMULATION MODEL (CBSM)
Can Bus Simulation Model, CBSM, is the virtual model designed in order to simulate Controller Area Network

Model, CANM, introduced in the previous section. Fig.2 shows interactions diagram of the objects in CBSM.

CBSM has two classes. They are CCanBus and CCanNode classes. Only one object of the CCanBus class is

created and named as the theBus object. The name convention of the node objects is as follows. node-1 is for the

first object, node-2 is for the second object and node-m for the m ͭ ͪ object and so forth.

Fig.2: Interaction diagram of the objects in Can Bus Simulation Model, CBSM.

FIFO Message

Queue

prs

m_pBus(theBus)

prs

 m_nodeList[i]

CCanBus (theBus)

 Advice()

 Register node

RlsMsg(*tCAN) {

for (i=0; i< m; i++)

{

 m_nodeList[i].In(*tCAn)

}
 RcvMsg(*tCAN)

 m_ nodeList[m]

 Unadvice()

 Unregister node

 PDO

CCanNode (node_1)

process object

In(*tCAN)

 prs.callback()

--- [..]

Out (*tCAN)

 thebus.RcvMsg()

calback()

 me [1]

[m]

 PDO

CCanNode (node_m)

process object

In(*tCAN)

 prs.callback()

--- [..]

Out (*tCAN)

 thebus.RcvMsg()

calback()

[1]

me [m]

m_pBus(theBus)

1 1

2 2

[Dülger* 6(4): April, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [34]

Operation of Can Bus Simulation Model

As it is seen from Fig.2, at least two node objects and a single bus object, theBus object, are created for a

minimum system. All node objects are preregistered to the theBus object. Registration takes places by calling

the advice(IUnknown** ppNode, LONG* cookie) method of the theBus object. The address of the pointer to the

node object is passed as an argument. The passed node pointer is then stored in an internal list named as

m_NodeList[]. A cookie for the registered node object is returned to the calling function. The cookie is later

used by the unAdvice(LONG cookie) method to unregister the node object.

The node object which wants to transmit a can message, initiates the transmission by calling the

RcvMsg(*tCAN) member function of the theBus object in it’s Out(*tCAN) method. The RcvMsg(*tCAN) method

passes the address of a variable of type tCAN as a can message argument and stores the value of the variable in

an internal first-in first-out (FIFO) Que.

The theBus object continuously observes the Que. If there is a non-transmitted can message already sitting in the

Queue, it is picked up and transmitted by calling the RlsMsg(*tCAN) method. The RlsMsg(*tCAN) method

enumerates all registered node objects and passes the can massage by calling In(*tCAN) member function of

registered node objects except the sending one.

The node object stores all process variables, encoded in type of tCAN, in a local memory block named Process

Data Object, PDO. PDO is well structured and incorporates so many sub sections as the number of all

registered node objects. Each sub section is assigned to the related node object. Assignment is accomplished

according to the simple indexing. Each node object has a unique identification number. The first node object has

an identification number one, the second two and so forth. The first sub section in PDO is assigned to the node

object having the identification number one, the second sub section in PDO is assigned to the node object

having the identification number two and so forth till the last sub section assigned to the node object having the

identification number m where m is the identification number of the last node object. When a node object must

transmit a can message, it creates a function argument of type tCAN from the data in the local section of the

PDO object (me section and path -1- in Fig.2). The process object is responsible for keeping the process

parameters up to date. The function argument so created is then passed to the theBus object.

When a node object receives a can message, the incoming function argument of type tCAN is first decoded for

the sending node object identification. The can message is then stored into the related section (path -2- in the

Fig.2). The process callback() function is then called so that the process is informed that the local PDO is

updated by another node object. At this instant, the process must act in accordance with the changing PDO

object (process update).

CAN Data Frame Structure tCAN

Fig.3: Definition of the Structure tCAN in the CBSM model.

// CanBusServer.idl : IDL source for CanBusServer
// CAN message
typedef
[
 uuid(B268A2C4-2A2E-4c9d-804D-0B2BAB4E47C8)
]
struct tCAN
{
 unsigned short id; // ID of the can massage (11 Bit)
 int rtr; // (1)! Remote-Transmit-Request-Frame?
 BYTE length; // number of data bytes
 BYTE data[8]; // buffer for 8 data bytes of can message
}tCAN;

[Dülger* 6(4): April, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [35]

Definition of the structure tCAN in CBSM is given in Fig.3. Only four fields from the standard CAN Data Frame

are used [3]. They are namely can message identification id, remote transmit request rtr, number of data bytes

length and buffer for data bytes data[8]. Type and size of these parameters are similar to that of defined ones in

a standard CAN data frame.

Class CCanBus

CCanBus class is designed for the bus object in the CBSM. The header file of the class is given in Fig.4.

Fig.4: Header File for the class CCanBus in the CBSM model

CCanBus class implements the public interface, ICAN_Bus having four methods. They are,

 Advice (IUnknown** ppNode, LONG* pCookie)

The method registers the node object and returns a cookie. Address of a pointer to the node object,

ppNode, is passed as an argument. A pointer to a LONG parameter, pCookie, is also passed. The

parameter pCookie is used as a handle to the registration.

 Unadvice (LONG cookie)

The method unregisters the node object. The node object is early registered and handled by the

parameter cookie.

 RlsMsg()

The method picks up the early can message sitting in the message queue and passes it to the registered

node objects except the sending node object.

 RcvMsg(tCAN * pMsg)

The method receives a can message from a node object and places it in the message queue.

class ATL_NO_VTABLE CCAN_Bus :

public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CCAN_Bus, &CLSID_CAN_Bus>,

public IDispatchImpl<ICAN_Bus, &IID_ICAN_Bus, &LIBID_CanBusServerLib,

/*wMajor =*/ 1, /*wMinor =*/ 0>

{

public:

CCAN_Bus();

DECLARE_REGISTRY_RESOURCEID(IDR_CAN_BUS)

BEGIN_COM_MAP(CCAN_Bus)

COM_INTERFACE_ENTRY(ICAN_Bus)

COM_INTERFACE_ENTRY(IDispatch)

END_COM_MAP()

CComDynamicUnkArray m_vecCallBk; // nodeList

DECLARE_PROTECT_FINAL_CONSTRUCT()

public:

STDMETHOD(Advice)(IUnknown** ppNode, LONG* pCookie);

STDMETHOD(Unadvice)(LONG cookie);

STDMETHOD(RlsMsg)();

STDMETHOD(RcvMsg)(tCAN * pMsg);

protected:

std::queue <CCANMsg * > m_lstFIFO; // FIFO Queue

int _RlsMsg();

};

OBJECT_ENTRY_AUTO(__uuidof(CAN_Bus), CCAN_Bus)

[Dülger* 6(4): April, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [36]

Class CCanNode

CCanCNode class is designed for the node object in the CBSM. The header file of the class is given in Fig.5.

CCanNode class implements the public interface, ICAN_Node having four methods. They are,

 In(tCAN* canMsg);

The method is called by the theBus object when the bus has a message. The address of a message is

passed as an argument. The method calls a callback function which is already registered.

 Out(tCAN* canOut);

The method is called when the node object itself wants to transmit a message. The message is given to

the theBus object.

 AddCallBack(long** fp, long ** obj);

The method registers a callback function pointer, fp, over a static object indicated by obj. The callback

function is implemented by the process object.

 w_on ();

The method is reserved for process implementation.

Fig.5: Header File for the class CCanNode in the CBSM model.

class ATL_NO_VTABLE CCAN_Node :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CCAN_Node, &CLSID_CAN_Node>,
public IDispatchImpl<ICAN_Node, &IID_ICAN_Node, &LIBID_CanBusServerLib, /*wMajor
=*/ 1, /*wMinor =*/ 0>
{
protected:

BYTE m_PDO[NUM_NODES][8]; // Process Data Object
BYTE m_COMMAND[8];
BYTE m_nMe;
FP m_pf;
void* m_pOBJ;
ICAN_Bus* m_pICanBus; // smart pointer to the theBus
public:
CCAN_Node();
DECLARE_REGISTRY_RESOURCEID(IDR_CAN_NODE)
BEGIN_COM_MAP(CCAN_Node)
COM_INTERFACE_ENTRY(ICAN_Node)
COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()
DECLARE_PROTECT_FINAL_CONSTRUCT()
public:
/* interface ICAN_Node – methods */
STDMETHOD(In)(tCAN* canMsg);
STDMETHOD(Out)(tCAN* canOut);
STDMETHOD(AddCallBack)(long** fp, long ** obj);
STDMETHOD(w_on)();
/* interface ICAN_Node – properties */
STDMETHOD(get_CanBus)(IUnknown** pVal);
STDMETHOD(put_CanBus)(IUnknown* newVal);
STDMETHOD(get_me)(BYTE* pVal);
STDMETHOD(put_me)(BYTE newVal);

};
OBJECT_ENTRY_AUTO(__uuidof(CAN_Node), CCAN_Node)

[Dülger* 6(4): April, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [37]

TESTING THE CAN BUS SIMULATION MODEL
The developed dynamic link library CanServer.dll, implementing the Can Bus Simulation Model, CBSM, is used

and verified in the Distributed Elevator Control System, DECS, carried out by the author [4]. DECS is based

upon the CBSM. DECS is made up of Lift-Objects and Stair-Object each of which aggregates a CCanNode

(node) object. The intelligence is distributed among the Lift-Objects. All objects are connected over the

Controller Area Network (CAN) through the simulated CCanBus (theBus) object. Communication task is hence

performed by the Can Bus Simulation Model, CBSM.

The test model has one theBus object, four Lift-Objects objects and 10 Stair-Objects objects. Each Lift-Object

should serve the demands coming either from inside the cabin and/or from the stair objects (building). As the

Lift-Objects are serving the demands, they are either moving up, down or at rest. That means state parameters

of the each lift object (lift identification number, current stair at which the lift is passing or staying, direction of

the lift movement, demand vector inside the lift cabin etc.) are changing. Similarly state parameters of the each

stair object are also changing as the grand process goes forth. How lifts make decision to move is a matter of

grand process and discussed in DECS in details [4].

Each object must be aware of any change in other object’s states. In our test case, each lift and stair object must

know state of all other objects simultaneously. Therefore each object broadcasts its state to all other objects in a

regular time interval continuously thorough the CBSM. Here each lift and stair object redraws itself each time

after the broadcasting is completed. Continuous redrawing of objects on the screen builds the simulation of the

grand process.

Fig.6 is taken from the test. Careful examination of the Fig.6 reveals that objects states are changing as the

grand process dictates. This indicates and proofs that the DECS works as expected. Since DECS utilises the

CBSM for communication, this indication is also a proof for the reliable operation of the CBSM.

Fig.6: Simulation of the Lift-Objects and Stair-Objects in test case [4].

[Dülger* 6(4): April, 2019] ISSN 2349-4506
 Impact Factor: 3.799

Global Journal of Engineering Science and Research Management

http: // www.gjesrm.com ©Global Journal of Engineering Science and Research Management

 [38]

PROPOSAL FOR FUTURE WORK
In this work, a virtual model for the simulation of the can bus protocol is proposed for the process which is to be

simulated under windows operating system. Underlying physical and low level specification of the CAN

protocol is ignored. As a future work, the ignored specification can be implemented. This will help linking the

simulations to real processes hence providing more flexibility in design and development of the distributed

system.

ABBREVIATIONS

CCS: Centralised Control System.

CAN: Controller Area Network.

COM: Compound Object Modelling

CANM: Controller Area Network Model.

CBSM: Can Bus Simulation Model.

DECS: Distributed Elevator Control System.

tCAN: Can Data Frame structure.

PDO: Process Data Object

REFERENCES
1. Robert Bosch GmbH, “CAN Specification 2.0”, 1991.

2. Microsoft, “The Component Object Model”, https://docs.microsoft.com/en-

us/windows/desktop/com/the-component-object-model

3. Cook J.A., Freudenberg J. S., "Controller Area Network”, EECS 461, Fall 2008, Revised October

2013.

4. Dülger, Mustafa “Development of the State Machine for the Distributed Elevator Control System

Implementing Control Area Network (CAN)”, Global Journal of Engineering Science and Research

Management, February 2019.

https://docs.microsoft.com/en-us/windows/desktop/com/the-component-object-model
https://docs.microsoft.com/en-us/windows/desktop/com/the-component-object-model

